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Nonlinear vortex modes in dual-core photonic
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José Ramón Salgueiro* and Francisco Santos

Departamento de Física Aplicada, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n,
32004 Ourense, Spain

*Corresponding author: jrs@uvigo.es

Received May 29, 2009; revised October 5, 2009; accepted October 11, 2009;
posted October 12, 2009 (Doc. ID 112122); published November 16, 2009

We study the different families of vortex-type modes that can exist in a photonic crystal fiber with two close
defects forming a dual-core coupler and presenting the Kerr nonlinearity. Those complex modes bifurcate from
the real double-dipole states leading to different states with different phase structures. When power is high
enough, single- and double-vortex modes as well as combinations of vortex and fundamental modes arise. Also,
families of discrete vortices formed by multipoles located inside the cores are found. We classify the different
families, describe their nontrivial bifurcations, and study the stability of the states identifying different
scenarios. © 2009 Optical Society of America
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. INTRODUCTION
n recent years, a lot of attention has been paid to photo-
ic crystal fibers (PCFs) due to the interesting properties
hey present in contrast with the conventional optical fi-
ers [1,2]. A PCF is a tubular structure of a substrate ma-
erial with a periodic array of air holes running parallel to
he optical axis and presenting a central defect. Among
he properties that make these structures very interest-
ng are the endlessly monomode character; i.e., they sup-
ort only the fundamental mode regardless the wave-
ength for a very broad range of geometrical parameters,
he flexibility of dispersion control that allows to bring the
oint of minimum dispersion to a desired wavelength only
cting on the geometrical parameters, and the possibility
o enhance and precisely design the birefringence. Accord-
ng to the type of the central defect there can be two dif-
erent kinds of guiding mechanisms. When the core defect
s made of a hole of different size or shape (hollow fibers),
uiding properties rely on Bragg scattering which leads to
he existence of bandgaps in the frequency spectrum. On
he other hand, when the defect consists in a lack of some
f the central holes, so that the fiber core is made of the
ubstrate material (solid core fibers), the guiding is ac-
omplished by the conventional total internal reflection
echanism due to the fact that the air holes in the clad-

ing region make it to have a lower mean refractive index
han the core.

The particular geometry of PCFs, constituting a system
ith discrete symmetry, makes them present a modal

pectrum different from that of conventional fibers [3] not
nly because of the specific symmetry properties but also
ecause discreteness induces limitations in the number of
odes [4]. The possibility of making PCFs of a material

resenting a nonlinear response to the optical field makes
hose structures very appropriate for all-optical process-
ng, since nonlinear effects are enhanced due to the strong
onfinement of the field inside the fiber core. In this way,
0740-3224/09/122301-7/$15.00 © 2
ptical fibers are known to support different kinds of non-
inear modes in the form of fundamental solitons [5] and
ortices [6]. Importantly, the structure of the PCF allows
n to stabilize nonlinear modes that are unstable in con-
entional homogeneous media. In fact, the stabilization of
patial optical solitons when the PCF substrate presents
Kerr nonlinear response was numerically demonstrated

7,8], which are known to undergo spreading or collapse
n homogeneous media.

As it concerns vortex solitons, i.e., optical fields pre-
enting a phase dislocation point and an increasing phase
rom 0 to 2�� around the dislocation, � being an integer
amed vorticity or winding number, they may present in
onlinear media either radial symmetry [6,9] or a multi-

obed structure in the form of clusters [10–13] made of
undamental solitons presenting the characteristic vortex
hase structure. Vortex solitons and soliton clusters were
ound to be stable in PCFs under a power threshold
14,15]. In a similar context, two-dimensional solitons and
ortices were stabilized using a periodic square lattice
16,17].

In this paper we carry out a study of the vortexlike
odes in a nonlinear Kerr-type PCF with two defects

lack of two consecutive or close air holes). The fundamen-
al solutions for this kind of dual-core PCFs were already
tudied [18] resulting in, along with the usual symmetric
nd antisymmetric modes, a new asymmetric mode ap-
earing over a power threshold bifurcating from the sym-
etric one. This new state is the key for the all-optical

witching operations since it is stable whereas the sym-
etric one turns unstable beyond the bifurcation point
aking possible the suppression of the coupling. This ef-

ect of destabilization of the original solution to form a
table asymmetric state is known as spontaneous symme-
ry breaking (SSB) and was already studied for two-
omponent nonlinear systems with a superposed periodic
attice [19]. On the other hand, it is worth mentioning
009 Optical Society of America
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hat experimental results on applications using dual-core
CFs were already reported, as for instance velocity mea-
uring [20] or nonlinear optical switching [21].

The solutions with a vortex in either one or two of the
CF cores are, in principle, expected to be modulationally
table under a power threshold due to the PCF structure
hough azimuthally unstable. Nevertheless, there is the
ossibility of modifying this kind of systems introducing
lements to enhance the stability properties. In fact, vec-
or systems with an additional incoherently coupled com-
onent have been demonstrated to be suitable for stabi-
izing vortices [22,23]. Also, particular interest has
ecently been devoted to nonlocal nonlinear media, where
he nonlinear response at a particular position does not
xclusively depend on the field at that point but also on
he field in the surroundings. This kind of media supports
table vortices [24–26] and also other types of solitary
aves carrying angular momentum, such as azimuthally
odulated rotating singular optical beams or azimuthons

27], or multipole and spiraling solitons [28], as well as
piraling multivortices [29]. The possibility of using such
edia for the fabrication of PCFs or the generation of

uch nonlinear response by means of complementary
echniques such as filling up the PCF holes with nonlin-
ar liquids makes the consideration of this basic and sim-
ler system a necessary previous step for the study of
elds with phase structure in nonlinear PCF structures.
In Section 2 we will present the model used to describe

he nonlinear fields with vorticity in the dual-core nonlin-
ar PCF. In Section 3 we find, classify, and study the dif-
erent families of solutions and their bifurcation schemes.
inally, in Section 4, we analyze the stability of the differ-
nt families of solutions.

. MODEL AND STATIONARY STATES
e consider a PCF made of a material with refractive in-

ex ns and with the nonlinear Kerr response structured
ith a triangular network of air holes (index na). The lack

f two of those consecutive or close holes constitutes two
efects forming a dual-core coupler (see Fig. 1). The effec-
ive increase in the linear index inside the cores with re-
pect to the surroundings makes the PCF device of the
ndex-guiding or solid-core type. We choose the optical
xis of the PCF in the direction Z (propagation direction),
o that the triangular structure lies on the transversal
lane �X ,Y� and comes given by the function W�X ,Y�
na+�V�X ,Y�, where �=ns−na is the index difference and

Λ

r

ig. 1. (Color online) Sketch of the central part of the PCF with
riangular structure and two close defects (double solid core)
howing the basic parameters.
�X ,Y� is a normalized function which takes the value
=1 in the substrate and the value V=0 inside the air
oles. Thus, the optical scalar field E�X ,Y ,Z� propagating

nside the PCF along the Z direction can be modeled by
he following nonlinear wave equation:

2ik
�E

�Z
+ ��

2 E + 2k2�W�X,Y� + �V�X,Y��E�2�E = 0, �1�

here ��
2 =�2 /�X2+�2 /�Y2 is the Laplace operator, k

2� /� is the wavenumber related to the wavelength �,
nd � is a parameter describing the nonlinear Kerr re-
ponse of the substrate. To further simplify the model we
ill choose na=0 without loss of generality. In fact, choos-

ng a particular value for the base index na only has the
ffect of a shift in the modal spectrum. On the other hand,
he parameters k, �, and � can be dropped from the equa-
ion by a proper rescaling of the spatial variables and the
eld. In fact, taking the new variables and field as x
k�2�X, y=k�2�Y, z=k�Z, and U=�� /�E, the equation

akes the following canonical form:

i
�U

�z
+ ��

2 U + V�x,y��1 + �U�2�U = 0, �2�

here the Laplace operator is now referred to the new
patial variables x and y.

We are interested in solutions which remain stationary
long the propagation direction z, being of the form

U�x,y,z� = u�x,y�exp�i�z�, �3�

here � is the propagation constant. Also, we are inter-
sted in solutions presenting phase dislocations (vortices)
o that the phase performs a number of windings around
he dislocation. In principle, we seek stationary solutions
�x ,y� with phase dislocations located at the center of
ach defect core, so that the phase increases from 0 to 2��
round any or both core centers, with � being the vorticity
r winding number. According to this, the function u de-
cribing the transversal amplitude of the stationary field
hould be a complex function. In this work we will focus
n the simplest case of first-order vortices, considering �
1. Substituting Eq. (3) into Eq. (2) we come up with the

ollowing z-independent equation for the transversal field
mplitude:

− �u + ��
2 u + V�x,y��1 + �u�2�u = 0. �4�

ow considering the real and imaginary parts of u sepa-
ately, u=u1+ iu2, and substituting into Eq. (4) we obtain
system of two identical equations for u1 and u2,

− �ui + ��ui + V�1 + u1
2 + u2

2�ui = 0, i = 1,2. �5�

lthough both equations are identical, they are coupled
y the nonlinear term and, consequently, the functions u1
nd u2 representing real and imaginary parts of the field
re in general different. The model is equivalent to the
ne describing a vector system where the two incoher-
ntly coupled components present the same propagation
onstant.
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. FAMILIES OF NONLINEAR MODES
e solved the system described by Eq. (5) numerically

30]. The nonlinearity makes solutions of Eq. (4) depen-
ent on power, P=��u1

2+u2
2�dxdy, and there exist different

amilies, each one described by a curve in the plane �� ,P�,
hich show different field amplitudes or phase configura-

ions. Different kinds of symmetric and asymmetric solu-
ions containing vortices in either one or both cores were
ound. There also exist first-order solutions without any
hase structure which can also be symmetric or asymmet-
ic and present the shape of double or single dipoles. In
ubsections 3.A–3.C we will describe the different types
f solutions classifying them in three main groups. First,
e briefly examine the solutions without any vorticity.
econd, we will pay attention to those solutions present-

ng a vortex centered at each of the cores. We will generi-
ally name these states double vortices (DVs) and will ex-
mine the different subfamilies according to the
mplitude distribution (shape) and phase structure. Fi-
ally, we will study the high asymmetric solutions con-
aining vortices that we name asymmetric vortices (AVs).
hey are composed of a vortex in one of the cores and a
eld distribution without any phase structure in the other
ore.

The power curves correspondent to the families we are
tudying are plotted in Fig. 2. The numerical calculations
ere carried out considering a PCF with a pitch (distance
etween closest hole centers) of �=10 and hole radius r
4. These particular values of the parameters, which lead

o holes filling a large fraction of the fiber section, are nec-
ssary in order that the PCF supports the first excited
odes (as is the case of vortices). Otherwise, the strong
onomode character of PCFs would not allow the exis-

ence of modes except for the fundamental.

40

60

po
w

er

1 1.1 1.2 1.3 1.4 1.5

β

60

80

100

B

C

D

D

F

G

H

I

E

DV

DD

DV
n

F
f
�
t
t

. First-Order Solutions without Vorticity
f we focus on first-order solutions, the simplest station-
ry states are real-valued functions—with one of the com-
onents in Eq. (5) identically zero—in the form of double
ipoles (DDs) which can present the four different con-
gurations shown in Figs. 3(a)–3(d). Each configuration
orresponds to a family of solutions on the power diagram
epresented in Fig. 2 as a dashed curve. There are actu-
lly four close-together lines (one for each solution type)
s is shown in Fig. 4 (dashed lines) where the low power
egion of the diagram is zoomed.

In the linear limit �P→0� the four DDs are the unique
rst-order solutions possible since the double-core struc-
ure reduces the original discrete symmetry of the PCF,
6v, into C2v, and consequently they must remain invari-
nt upon rotations of � radians or reflections with respect
o the Cartesian coordinate axes. Besides, the states illus-
rated in Figs. 3(a) and 3(b) will be named bounding �b�
nd antibounding �a�, respectively, regarding the molecu-
ar orbital theory, since they are characterized, respec-
ively, by a high and low field density in the space be-
ween both cores. The other two families of solutions
Figs. 3(c) and 3(d)] will be named parallel �p� and crossed
x�, respectively, due to the fact that both dipoles present
ame or opposite sign distribution. So, these four types of
olutions will be denoted b, a, p, and x, respectively.

In a nonlinear regime, as a consequence of a SSB, there
lso exist asymmetric real-valued states in the form of
Ds characterized by a different power on each of the

ores, which can take the shape of single dipoles at high
nough power. We name them asymmetric dipoles, and
hey can present one of the two shapes shown in Figs. 3(e)
nd 3(f) and bifurcate from the symmetric DDs at points
5 and O6 (see Fig. 4).

. Symmetric Vortex Solutions
n the linear limit it is not possible to find vortexlike fields
with dislocations in one or two of the cores). In fact, as
hown above, the reduction in symmetry induced by the
ual-core structure makes the four DD solutions to be
ondegenerate and consequently they cannot be com-
ined to form a stationary state. When nonlinearity is
resent, however, it is possible to get stationary vortex so-
utions if real and imaginary parts are formed by DDs
ontributing with a different power; i.e., they are asym-
etric with respect to the real and imaginary compo-

ents. Examples of such stationary states with the shape
0.7 0.8 0.9 1 1.1
propagation constant, β

0

20
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AV
AD

ig. 2. Power versus propagation constant for the different
amilies of vortexlike solutions (continuous curves), the double-
ipole solutions (dashed curves), and the asymmetric dipoles
dashed-dotted curves). Big capital letters label points corre-
ponding to the different examples shown in other figures below.
he italic legends label the branches correspondent to the differ-
nt types of solutions: double dipoles (DDs), asymmetric dipoles
ADs), DVs, and AVs. Beware that curves may actually constitute

bunch of close-together curves (not distinguished due to the
cale of the figure) describing families of solutions with similar
though different) power. Inset: detail of the DV branch at higher
ower, where double-quadrupole solutions originate.
ig. 3. (Color online) (a)–(d) Four DD states of a dual-core PCF
or �=0.8: (a) bounding type �b�, (b) antibounding �a�, (c) parallel
p�, (d) crossed �x�. (e),(f) Two asymmetric dipoles (AD1 and AD2)
hat bifurcate from the DDs at points O6 and O7 (Fig. 4) and take
he shape of single dipoles at high enough power.
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f double-doughnut vortices are shown in Fig. 5. There
re four types of DV solutions according to the type of
Ds forming their real and imaginary parts; to be precise

here are bounding and antiboundinglike solutions—we
enote them as b and a—which have a bounding or anti-
ounding DD, respectively, as one of the components, and
ach of those types can host two vortices of the same or
he opposite vorticity, regarded as positive �+� and nega-
ive (�), respectively. Consequently, we denote the four
ossible DV solutions as b+, b−, a+, and a−. The ampli-
ude and phase diagrams of Fig. 5 account for these four
ypes of DVs.

The four different DV solutions are nondegenerated, so
hat the curve on the power diagram describing the DV
amily (Fig. 2) is actually formed by four close curves,
ach one correspondent to one of the types of DVs de-
cribed above. They exist over a particular power thresh-
ld and bifurcate from the DDs at points O1–O4 as shown
n the zoomed diagram of Fig. 4. The bounding-positive
b+� and bounding-negative �b−� DV families bifurcate
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ig. 4. Detail of the power curves for the low power regime.
ashed lines are the four DD families (b, a, p, and x stand for the
ounding, antibounding, parallel, and crossed families, respec-
ively). Points labeled O1–O4 are those from where the four DV
amilies bifurcate [the four types bounding positive �b+�, bound-
ng negative �b−�, antibounding positive �a+�, and antibounding
egative �a−� are indicated]. O5 and O6 are the bifurcation points

or the two asymmetric DD families (labeled as AD1 and AD2 and
lotted as dashed-dotted lines). O7 is the bifurcation point for the
V. Inset: zoom of the region close to point O5 to show that
ranches AD1 and AD2 are noncoincident.

ig. 5. (Color online) (a),(b) Intensity-level plots of two DV
tates for �=0.85 (point B in Fig. 2), one of the bounding type (a)
nd another of the antibounding type (b). (c)–(f) Phase patterns
or each of the DV states correspondent to that point. Images (c)
nd (e) show the phase of the same vorticity states �+� and im-
ges (d) and (f) the phase of those with opposite vorticity (�), so
hat images (c)–(f) correspond to the states b+, b−, a+, and a−,
espectively.
rom the crossed and parallel DDs, respectively, whereas
oth antibounding solutions (a+ and a−) bifurcate from
he antibounding DD. Close to the bifurcation points,
ower carried by real and imaginary components is in-
reasingly different up to the point that one of them van-
shes at the bifurcation point turning the state into the
D mode. An example of a DVs state of the b+ type close

o the bifurcation point is shown in Fig. 6 (image A).
At higher powers we found DV solutions in the form of
ultipoles particularly with the shape of double tripoles

nd double quadrupoles (see examples in Fig. 6; cases C
nd E, respectively). The double-tripole solutions arise at
oderate power and they are described in the power dia-

ram (Fig. 2) by branches that originated from the main
V curves. The rise of solutions with a tripole shape is re-

ated to the symmetry of the PCF network. In fact, a
ingle tripole (ST) presents the symmetry described by
he group C3 which is a subgroup of the C6v symmetry
roup characteristic of the PCF. Nevertheless, the pres-
nce of the second core further limits the symmetry to C2v
nd consequently only two different double tripoles can
xist; those shown in Fig. 6 (images labeled C1 and C2).
gain, the four combinations b+, b−, a+, and a− are pos-
ible.

It is important to notice that the point where the
ouble-tripole solutions start is not an actual bifurcation
oint. Instead, the branch of the doughnutlike vortices
pens, so that both extremes join to one different double-
ripole branch [see Figs. 2 and 7(a)]. As power increases,
he lobes of the double-tripole solutions become increas-
ngly narrower and their maximum amplitude increas-
ngly larger, becoming independent of the PCF structure
nd so both curves merge. The transition between dough-
utlike and tripole solutions is gradual and the absence of
proper bifurcation point is related to the fact that both

ouble-tripole solutions are nondegenerated. In fact, the
uppression of a bifurcation point due to an asymmetry
hat lifts a degeneration is already known in the context
f asymmetric couplers [31]. We would like to remark at
his point that this phenomenon is described in [19] as a
seudobifurcation in the context of a two-component sys-
em in a 2D square lattice. In that system, however, the
symmetry is not introduced by two defects in the
attice—the use of the coupled mode theory would not al-
ow us to model the effect of the two side-by-side defects
nyway. Instead, the asymmetry is introduced by a phase
ismatch between the two lattices affecting each compo-

ig. 6. (Color online) Some examples of DV states plotted as
ntensity-level images and correspondent to different branches in
he power diagram. Two double-doughnut states (A, D)—one
lose to the bifurcation point (A)—two double tripoles (C1, C2),
nd two double quadrupoles (E1, E2) are shown. Labels corre-
pond to points (A, C, D, and E) in Fig. 2.
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ent, but the result is similar: the suppression of the bi-
urcation point.

For even higher powers, double quadrupoles exist and
gain they are described by branches joining to the main
V curves [see Fig. 2 (inset) and Fig. 7(b)]. In this case

he original symmetry of a single-core quadrupole �C4v�
oes not belong to the group of the PCF symmetry, al-
hough they have in common the symmetry of the sub-
roup C2v. As in the case of the double tripoles, the
ouble-core structure of the PCF imposes a C2v symmetry
nd the solution types shown in Fig. 6 (E1 and E2) con-
titute the unique possibilities.

. Asymmetric Solutions with Vorticity
e have also found asymmetric solutions in the form of

ingle-core vortices (SVs) and combinations of a vortex in
ne of the cores and a fundamental field in the other
vortex-fundamental (VF)]. In Fig. 8 we present some ex-
mples to illustrate different kinds of configurations. The
xistence of symmetric DVs as well as SVs suggests the
xistence of asymmetric DVs that could be generated
rom the DVs via a SSB. Nevertheless, we were unable to
nd such solutions. A possible explanation for the lack of
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ig. 7. (a) Detail of the power diagram at the junction where
ouble-tripole branches (labeled DT) originate from the DV ones.
ifferent curves correspondent to families of different phase

tructure are shown: bounding positive �b+�, bounding negative
b−�, antibounding positive �a+�, and antibounding negative
a−�. For the low branch lines corresponding to the families a+
nd a− are very close and not resolved at the scale of the plot. (b)
ame for the junction point where double-quadrupole (DQ) solu-
ions originate. Again curves corresponding to a+ and a− are too
lose to be resolved.

ig. 8. (Color online) Some examples of single vortices and VF
tates with different shapes (shown as intensity plots): two types
f STs (F1, F2), single doughnut (G), two types of TF states (H1,
2), and doughnut-fundamental state (I). Labels correspond to
oints in Fig. 2.
olutions with such a shape is the reduced symmetry of
he dual-core system which makes the four DDs nonde-
enerated. Consequently, as commented above, the gen-
ration of a stationary vortex requires a specific power ra-
io between real and imaginary parts. Additionally, an
symmetric state also requires a specific ratio between
ower carried by each core and both conditions cannot be
ulfilled simultaneously to form an asymmetric DV sta-
ionary solution. It is possible, however, to have a state
ith a vortex in one core and a field without phase struc-

ure in the other one.
At low power (see Fig. 2) there is a single curve of AVs

escribing the solutions of a vortex with a doughnut
hape [of the form similar to the one shown in Fig. 8 (G)].
his curve bifurcates from one of the asymmetric DDs at
oint O7 (see Fig. 4). Close to the bifurcation point, pow-
rs of real and imaginary parts become increasingly dif-
erent up to the point (bifurcation) where one of them
anishes and the field takes the shape of an AD.

For higher power the asymmetric tripole solutions are
ound. In this case the junction region is much more com-
licated since several branches corresponding to several
ultipolar solutions appear (Fig. 8). On one hand, there

re STs of two different shapes (images F1 and F2) which
re nondegenerated due to the presence of the second
ore. On the other hand, there are also nondegenerated
ombinations of a tripole and a fundamental field [tripole-
undamental (TF)] also with two different shapes (images
1 and H2). These TF solutions, along with the VF with a
oughnut vortex (image I), can also present two possible
hase distributions that we name bounding �b� or anti-
ounding �a� depending, respectively, on whether the fun-
amental field has the same or opposite sign as the clos-
st lobe of the dipole forming the vortex. This means that
he corresponding curves on the power diagram are actu-
lly formed by two close lines. In Fig. 9 we show the re-
ion of the junction point as a zoomed diagram represent-
ng all the lines describing the different family solutions
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nd how they originate in a nontrivial way at the junc-
ion. Again, the breakage of symmetry induced by the
ual-core structure prevents the existence of actual bifur-
ation points.

For higher powers, in a similar fashion as in the case of
he DVs, the upper branches correspondent to the single-
oughnut and doughnut-fundamental solutions go
hrough new junction zones where single quadrupoles
nd combinations of quadrupoles and fundamental fields
rise. Some examples are presented in Fig. 10. Again, the
ymmetry of the structure allows only two kinds of single
uadrupoles (images J1 and J2) and two quadrupole-
undamental states (images L1 and L2). The latter ones
an be of two types, bounding or antibounding.

. STABILITY
e have checked the stability of the states of the different

amilies by simulating their propagation using a standard
eam propagation method. The main conclusion is the ex-
stence of two different scenarios. States characterized by

power over a threshold undergo collapse after a certain
ropagation distance. The higher the power the shorter
he distance they evolve before collapsing as is shown in

ig. 10. (Color online) Examples of single vortices and VF states
orrespondent to families of the doughnut and quadrupole types.
he two types of single quadrupoles (J1, J2) originate from the
V branch in Fig. 9 at higher power. The two types of
uadrupole-fundamental states (L1, L2) originate from the VF
ranch at higher power. The doughnut-shaped single-vortex (K)
nd VF (M) are also examples related to a higher power.
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ig. 11. Maximum intensity versus propagation distance for dif-
erent double vortices (continuous curves) and single vortices
dashed curves). DV curves correspond to P=34.4 (a), P=30.1 (b),
=27.9 (c), and P=5.8 (d). Single-vortex simulations are for
=27.3 (e), P=15.8 (f), P=15.1 (g), and P=2.76 (h).
ig. 11 cases (a) and (b) and (e) and (f) for DV and single-
ortex states, respectively. Remarkably, this property is
ependent on power density and not on the family under
onsideration. In fact, families with power distribution on
oth cores—DV and VF—present a collapse threshold
bout P�30 while those families with power on a single
ore (single vortices) present a threshold around P
15.75. In both cases the propagation constant at the

hreshold point is about ��0.88. The power threshold is
pproximately at the point where the tripole solutions
riginate and consequently they undergo collapse upon
ropagation.
On the other hand, below the power threshold, the
odes do not develop collapse and the PCF structure pre-

ents them to spread out as in a bulk Kerr medium. Nev-
rtheless, after a distance they develop the azimuthal in-
tability so that the vortices break into fundamental
olitons that remain spinning inside the PCF core. The
istance for this breakup to occur depends on power, so
hat the lower the power the longest distance they survive
s shown in Fig. 11 cases (c) and (d) and (g) and (h). For
ow powers (close to the linear limit) the distance before
he breakup can be quite long.

Since the stationary states for a reasonable nonlinear
egime are unstable, since they collapse or at least de-
elop the azimuthal instability, an interesting further
tep is to seek ways to enhance the stability properties of
he medium, as considering vectorial systems of incoher-
ntly coupled components or using media with nonlocal
onlinearities. Anyway, the study of the present system,
ue to the simplicity of the model, constitutes a necessary
revious step for the study of vortices in dual-core PCFs.

. CONCLUSIONS
n this work we have studied and classified the different
tationary nonlinear vortex-type families of solutions in a
CF with two consecutive defects constituting a dual-core
onlinear coupler. We found solutions in the form of DVs
ith shapes of double doughnut, double tripole, and
ouble quadrupole. Additionally, asymmetric solutions in
he form of single vortices (located in one of the cores) and
ombination of vortices and fundamental states, also with
oughnut, tripole, and quadrupole shapes, were also cal-
ulated. The power diagram with the different bifurca-
ions and junction points was obtained and the different
olution families were classified. Finally, we presented a
tability study determining different instability scenarios.
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