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We study the different families of vortex-type modes that can exist in a photonic crystal fiber with two close
defects forming a dual-core coupler and presenting the Kerr nonlinearity. Those complex modes bifurcate from
the real double-dipole states leading to different states with different phase structures. When power is high
enough, single- and double-vortex modes as well as combinations of vortex and fundamental modes arise. Also,
families of discrete vortices formed by multipoles located inside the cores are found. We classify the different
families, describe their nontrivial bifurcations, and study the stability of the states identifying different

scenarios. © 2009 Optical Society of America
OCIS codes: 190.6135, 190.4370.

1. INTRODUCTION

In recent years, a lot of attention has been paid to photo-
nic crystal fibers (PCFs) due to the interesting properties
they present in contrast with the conventional optical fi-
bers [1,2]. A PCF is a tubular structure of a substrate ma-
terial with a periodic array of air holes running parallel to
the optical axis and presenting a central defect. Among
the properties that make these structures very interest-
ing are the endlessly monomode character; i.e., they sup-
port only the fundamental mode regardless the wave-
length for a very broad range of geometrical parameters,
the flexibility of dispersion control that allows to bring the
point of minimum dispersion to a desired wavelength only
acting on the geometrical parameters, and the possibility
to enhance and precisely design the birefringence. Accord-
ing to the type of the central defect there can be two dif-
ferent kinds of guiding mechanisms. When the core defect
is made of a hole of different size or shape (hollow fibers),
guiding properties rely on Bragg scattering which leads to
the existence of bandgaps in the frequency spectrum. On
the other hand, when the defect consists in a lack of some
of the central holes, so that the fiber core is made of the
substrate material (solid core fibers), the guiding is ac-
complished by the conventional total internal reflection
mechanism due to the fact that the air holes in the clad-
ding region make it to have a lower mean refractive index
than the core.

The particular geometry of PCFs, constituting a system
with discrete symmetry, makes them present a modal
spectrum different from that of conventional fibers [3] not
only because of the specific symmetry properties but also
because discreteness induces limitations in the number of
modes [4]. The possibility of making PCFs of a material
presenting a nonlinear response to the optical field makes
those structures very appropriate for all-optical process-
ing, since nonlinear effects are enhanced due to the strong
confinement of the field inside the fiber core. In this way,
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optical fibers are known to support different kinds of non-
linear modes in the form of fundamental solitons [5] and
vortices [6]. Importantly, the structure of the PCF allows
on to stabilize nonlinear modes that are unstable in con-
ventional homogeneous media. In fact, the stabilization of
spatial optical solitons when the PCF substrate presents
a Kerr nonlinear response was numerically demonstrated
[7,8], which are known to undergo spreading or collapse
in homogeneous media.

As it concerns vortex solitons, i.e., optical fields pre-
senting a phase dislocation point and an increasing phase
from 0 to 277¢ around the dislocation, € being an integer
named vorticity or winding number, they may present in
nonlinear media either radial symmetry [6,9] or a multi-
lobed structure in the form of clusters [10-13] made of
fundamental solitons presenting the characteristic vortex
phase structure. Vortex solitons and soliton clusters were
found to be stable in PCFs under a power threshold
[14,15]. In a similar context, two-dimensional solitons and
vortices were stabilized using a periodic square lattice
[16,17].

In this paper we carry out a study of the vortexlike
modes in a nonlinear Kerr-type PCF with two defects
(lack of two consecutive or close air holes). The fundamen-
tal solutions for this kind of dual-core PCFs were already
studied [18] resulting in, along with the usual symmetric
and antisymmetric modes, a new asymmetric mode ap-
pearing over a power threshold bifurcating from the sym-
metric one. This new state is the key for the all-optical
switching operations since it is stable whereas the sym-
metric one turns unstable beyond the bifurcation point
making possible the suppression of the coupling. This ef-
fect of destabilization of the original solution to form a
stable asymmetric state is known as spontaneous symme-
try breaking (SSB) and was already studied for two-
component nonlinear systems with a superposed periodic
lattice [19]. On the other hand, it is worth mentioning
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that experimental results on applications using dual-core
PCF's were already reported, as for instance velocity mea-
suring [20] or nonlinear optical switching [21].

The solutions with a vortex in either one or two of the
PCF cores are, in principle, expected to be modulationally
stable under a power threshold due to the PCF structure
though azimuthally unstable. Nevertheless, there is the
possibility of modifying this kind of systems introducing
elements to enhance the stability properties. In fact, vec-
tor systems with an additional incoherently coupled com-
ponent have been demonstrated to be suitable for stabi-
lizing vortices [22,23]. Also, particular interest has
recently been devoted to nonlocal nonlinear media, where
the nonlinear response at a particular position does not
exclusively depend on the field at that point but also on
the field in the surroundings. This kind of media supports
stable vortices [24—26] and also other types of solitary
waves carrying angular momentum, such as azimuthally
modulated rotating singular optical beams or azimuthons
[27], or multipole and spiraling solitons [28], as well as
spiraling multivortices [29]. The possibility of using such
media for the fabrication of PCFs or the generation of
such nonlinear response by means of complementary
techniques such as filling up the PCF holes with nonlin-
ear liquids makes the consideration of this basic and sim-
pler system a necessary previous step for the study of
fields with phase structure in nonlinear PCF structures.

In Section 2 we will present the model used to describe
the nonlinear fields with vorticity in the dual-core nonlin-
ear PCF. In Section 3 we find, classify, and study the dif-
ferent families of solutions and their bifurcation schemes.
Finally, in Section 4, we analyze the stability of the differ-
ent families of solutions.

2. MODEL AND STATIONARY STATES

We consider a PCF made of a material with refractive in-
dex ng and with the nonlinear Kerr response structured
with a triangular network of air holes (index n,). The lack
of two of those consecutive or close holes constitutes two
defects forming a dual-core coupler (see Fig. 1). The effec-
tive increase in the linear index inside the cores with re-
spect to the surroundings makes the PCF device of the
index-guiding or solid-core type. We choose the optical
axis of the PCF in the direction Z (propagation direction),
so that the triangular structure lies on the transversal
plane (X,Y) and comes given by the function W(X,Y)
=n,+6V(X,Y), where 6=n,—n, is the index difference and

Fig. 1. (Color online) Sketch of the central part of the PCF with
triangular structure and two close defects (double solid core)
showing the basic parameters.
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V(X,Y) is a normalized function which takes the value
V=1 in the substrate and the value V=0 inside the air
holes. Thus, the optical scalar field E(X,Y,Z) propagating
inside the PCF along the Z direction can be modeled by
the following nonlinear wave equation:

oE
2ik(9—Z +V2E + 2R (WX, Y) + WX, V)EZIE=0, (1)

where Vi =5?/0X%+3?/9Y? is the Laplace operator, k
=2x/\ is the wavenumber related to the wavelength X\,
and vy is a parameter describing the nonlinear Kerr re-
sponse of the substrate. To further simplify the model we
will choose n,=0 without loss of generality. In fact, choos-
ing a particular value for the base index n, only has the
effect of a shift in the modal spectrum. On the other hand,
the parameters &, 5, and vy can be dropped from the equa-
tion by a proper rescaling of the spatial variables and the
field. In fact, taking the new variables and field as x
=k\26X, y=k\26Y, z=k5Z, and U=\'y/SE, the equation
takes the following canonical form:

ou
ia—+v‘iU+V(x,y)(1+|U|2)U=o, (2)
z

where the Laplace operator is now referred to the new
spatial variables x and y.

We are interested in solutions which remain stationary
along the propagation direction z, being of the form

Ulx,y,z) = ulx,y)exp(ifz), (3)

where B is the propagation constant. Also, we are inter-
ested in solutions presenting phase dislocations (vortices)
so that the phase performs a number of windings around
the dislocation. In principle, we seek stationary solutions
u(x,y) with phase dislocations located at the center of
each defect core, so that the phase increases from 0 to 27€
around any or both core centers, with ¢ being the vorticity
or winding number. According to this, the function u de-
scribing the transversal amplitude of the stationary field
should be a complex function. In this work we will focus
on the simplest case of first-order vortices, considering ¢
=1. Substituting Eq. (3) into Eq. (2) we come up with the
following z-independent equation for the transversal field
amplitude:

- Bu+V2u+Vix,y)1+u>)u=0. (4)

Now considering the real and imaginary parts of u sepa-
rately, u=u;+iug, and substituting into Eq. (4) we obtain
a system of two identical equations for u; and us,,

—Bu;+ A u+ VA +ud+udu;=0, i=1,2. (5
Although both equations are identical, they are coupled
by the nonlinear term and, consequently, the functions u
and uy representing real and imaginary parts of the field
are in general different. The model is equivalent to the
one describing a vector system where the two incoher-
ently coupled components present the same propagation
constant.
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3. FAMILIES OF NONLINEAR MODES

We solved the system described by Eq. (5) numerically
[30]. The nonlinearity makes solutions of Eq. (4) depen-
dent on power, P=[ (u§+ ug)dxdy, and there exist different
families, each one described by a curve in the plane (8, P),
which show different field amplitudes or phase configura-
tions. Different kinds of symmetric and asymmetric solu-
tions containing vortices in either one or both cores were
found. There also exist first-order solutions without any
phase structure which can also be symmetric or asymmet-
ric and present the shape of double or single dipoles. In
Subsections 3.A-3.C we will describe the different types
of solutions classifying them in three main groups. First,
we briefly examine the solutions without any vorticity.
Second, we will pay attention to those solutions present-
ing a vortex centered at each of the cores. We will generi-
cally name these states double vortices (DVs) and will ex-
amine the different subfamilies according to the
amplitude distribution (shape) and phase structure. Fi-
nally, we will study the high asymmetric solutions con-
taining vortices that we name asymmetric vortices (AVs).
They are composed of a vortex in one of the cores and a
field distribution without any phase structure in the other
core.

The power curves correspondent to the families we are
studying are plotted in Fig. 2. The numerical calculations
were carried out considering a PCF with a pitch (distance
between closest hole centers) of A=10 and hole radius r
=4. These particular values of the parameters, which lead
to holes filling a large fraction of the fiber section, are nec-
essary in order that the PCF supports the first excited
modes (as is the case of vortices). Otherwise, the strong
monomode character of PCFs would not allow the exis-
tence of modes except for the fundamental.
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Fig. 2. Power versus propagation constant for the different
families of vortexlike solutions (continuous curves), the double-
dipole solutions (dashed curves), and the asymmetric dipoles
(dashed-dotted curves). Big capital letters label points corre-
sponding to the different examples shown in other figures below.
The italic legends label the branches correspondent to the differ-
ent types of solutions: double dipoles (DDs), asymmetric dipoles
(ADs), DVs, and AVs. Beware that curves may actually constitute
a bunch of close-together curves (not distinguished due to the
scale of the figure) describing families of solutions with similar
(though different) power. Inset: detail of the DV branch at higher
power, where double-quadrupole solutions originate.
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A. First-Order Solutions without Vorticity

If we focus on first-order solutions, the simplest station-
ary states are real-valued functions—with one of the com-
ponents in Eq. (5) identically zero—in the form of double
dipoles (DDs) which can present the four different con-
figurations shown in Figs. 3(a)-3(d). Each configuration
corresponds to a family of solutions on the power diagram
represented in Fig. 2 as a dashed curve. There are actu-
ally four close-together lines (one for each solution type)
as is shown in Fig. 4 (dashed lines) where the low power
region of the diagram is zoomed.

In the linear limit (P — 0) the four DDs are the unique
first-order solutions possible since the double-core struc-
ture reduces the original discrete symmetry of the PCF,
Cq,, into Cg,, and consequently they must remain invari-
ant upon rotations of 7 radians or reflections with respect
to the Cartesian coordinate axes. Besides, the states illus-
trated in Figs. 3(a) and 3(b) will be named bounding (b)
and antibounding (a), respectively, regarding the molecu-
lar orbital theory, since they are characterized, respec-
tively, by a high and low field density in the space be-
tween both cores. The other two families of solutions
[Figs. 3(c) and 3(d)] will be named parallel (p) and crossed
(x), respectively, due to the fact that both dipoles present
same or opposite sign distribution. So, these four types of
solutions will be denoted b, a, p, and x, respectively.

In a nonlinear regime, as a consequence of a SSB, there
also exist asymmetric real-valued states in the form of
DDs characterized by a different power on each of the
cores, which can take the shape of single dipoles at high
enough power. We name them asymmetric dipoles, and
they can present one of the two shapes shown in Figs. 3(e)
and 3(f) and bifurcate from the symmetric DDs at points
O5 and Og (see Fig. 4).

B. Symmetric Vortex Solutions

In the linear limit it is not possible to find vortexlike fields
(with dislocations in one or two of the cores). In fact, as
shown above, the reduction in symmetry induced by the
dual-core structure makes the four DD solutions to be
nondegenerate and consequently they cannot be com-
bined to form a stationary state. When nonlinearity is
present, however, it is possible to get stationary vortex so-
lutions if real and imaginary parts are formed by DDs
contributing with a different power; i.e., they are asym-
metric with respect to the real and imaginary compo-
nents. Examples of such stationary states with the shape

for 8=0.8: (a) bounding type (b), (b) antibounding (a), (c) parallel
(p), (d) crossed (x). (e),(f) Two asymmetric dipoles (AD1 and AD2)
that bifurcate from the DDs at points Og and O (Fig. 4) and take
the shape of single dipoles at high enough power.
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Fig. 4. Detail of the power curves for the low power regime.
Dashed lines are the four DD families (b, a, p, and x stand for the
bounding, antibounding, parallel, and crossed families, respec-
tively). Points labeled O;—0, are those from where the four DV
families bifurcate [the four types bounding positive (b+), bound-
ing negative (b-), antibounding positive (a+), and antibounding
negative (a—) are indicated]. O5; and Og are the bifurcation points
for the two asymmetric DD families (labeled as AD1 and AD2 and
plotted as dashed-dotted lines). Oy is the bifurcation point for the
AV. Inset: zoom of the region close to point Os to show that
branches AD1 and AD2 are noncoincident.

of double-doughnut vortices are shown in Fig. 5. There
are four types of DV solutions according to the type of
DDs forming their real and imaginary parts; to be precise
there are bounding and antiboundinglike solutions—we
denote them as b and a—which have a bounding or anti-
bounding DD, respectively, as one of the components, and
each of those types can host two vortices of the same or
the opposite vorticity, regarded as positive (+) and nega-
tive (—), respectively. Consequently, we denote the four
possible DV solutions as b+, b—, a+, and a—. The ampli-
tude and phase diagrams of Fig. 5 account for these four
types of DVs.

The four different DV solutions are nondegenerated, so
that the curve on the power diagram describing the DV
family (Fig. 2) is actually formed by four close curves,
each one correspondent to one of the types of DVs de-
scribed above. They exist over a particular power thresh-
old and bifurcate from the DDs at points O;—-0, as shown
in the zoomed diagram of Fig. 4. The bounding-positive
(b+) and bounding-negative (b—) DV families bifurcate

Fig. 5.
states for 8=0.85 (point B in Fig. 2), one of the bounding type (a)
and another of the antibounding type (b). (¢c)—(f) Phase patterns
for each of the DV states correspondent to that point. Images (c)
and (e) show the phase of the same vorticity states (+) and im-
ages (d) and (f) the phase of those with opposite vorticity (—), so
that images (c)—(f) correspond to the states b+, b—, a+, and a-,
respectively.
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from the crossed and parallel DDs, respectively, whereas
both antibounding solutions (a+ and a-) bifurcate from
the antibounding DD. Close to the bifurcation points,
power carried by real and imaginary components is in-
creasingly different up to the point that one of them van-
ishes at the bifurcation point turning the state into the
DD mode. An example of a DVs state of the b+ type close
to the bifurcation point is shown in Fig. 6 (image A).

At higher powers we found DV solutions in the form of
multipoles particularly with the shape of double tripoles
and double quadrupoles (see examples in Fig. 6; cases C
and E, respectively). The double-tripole solutions arise at
moderate power and they are described in the power dia-
gram (Fig. 2) by branches that originated from the main
DV curves. The rise of solutions with a tripole shape is re-
lated to the symmetry of the PCF network. In fact, a
single tripole (ST) presents the symmetry described by
the group C3 which is a subgroup of the Cg, symmetry
group characteristic of the PCF. Nevertheless, the pres-
ence of the second core further limits the symmetry to C,,
and consequently only two different double tripoles can
exist; those shown in Fig. 6 (images labeled C1 and C2).
Again, the four combinations b+, b—, a+, and a— are pos-
sible.

It is important to notice that the point where the
double-tripole solutions start is not an actual bifurcation
point. Instead, the branch of the doughnutlike vortices
opens, so that both extremes join to one different double-
tripole branch [see Figs. 2 and 7(a)l. As power increases,
the lobes of the double-tripole solutions become increas-
ingly narrower and their maximum amplitude increas-
ingly larger, becoming independent of the PCF structure
and so both curves merge. The transition between dough-
nutlike and tripole solutions is gradual and the absence of
a proper bifurcation point is related to the fact that both
double-tripole solutions are nondegenerated. In fact, the
suppression of a bifurcation point due to an asymmetry
that lifts a degeneration is already known in the context
of asymmetric couplers [31]. We would like to remark at
this point that this phenomenon is described in [19] as a
pseudobifurcation in the context of a two-component sys-
tem in a 2D square lattice. In that system, however, the
asymmetry is not introduced by two defects in the
lattice—the use of the coupled mode theory would not al-
low us to model the effect of the two side-by-side defects
anyway. Instead, the asymmetry is introduced by a phase
mismatch between the two lattices affecting each compo-

4 2 3 )]

Fig. 6. (Color online) Some examples of DV states plotted as
intensity-level images and correspondent to different branches in
the power diagram. Two double-doughnut states (A, D)—one
close to the bifurcation point (A)—two double tripoles (C1, C2),
and two double quadrupoles (E1, E2) are shown. Labels corre-
spond to points (A, C, D, and E) in Fig. 2.
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Fig. 7. (a) Detail of the power diagram at the junction where
double-tripole branches (labeled DT) originate from the DV ones.
Different curves correspondent to families of different phase
structure are shown: bounding positive (b+), bounding negative
(b-), antibounding positive (a+), and antibounding negative
(a-). For the low branch lines corresponding to the families a+
and a— are very close and not resolved at the scale of the plot. (b)
Same for the junction point where double-quadrupole (DQ) solu-
tions originate. Again curves corresponding to a+ and a— are too
close to be resolved.

nent, but the result is similar: the suppression of the bi-
furcation point.

For even higher powers, double quadrupoles exist and
again they are described by branches joining to the main
DV curves [see Fig. 2 (inset) and Fig. 7(b)]. In this case
the original symmetry of a single-core quadrupole (Cy,)
does not belong to the group of the PCF symmetry, al-
though they have in common the symmetry of the sub-
group C,,. As in the case of the double tripoles, the
double-core structure of the PCF imposes a Cy, symmetry
and the solution types shown in Fig. 6 (E1 and E2) con-
stitute the unique possibilities.

C. Asymmetric Solutions with Vorticity

We have also found asymmetric solutions in the form of
single-core vortices (SVs) and combinations of a vortex in
one of the cores and a fundamental field in the other
[vortex-fundamental (VF)]. In Fig. 8 we present some ex-
amples to illustrate different kinds of configurations. The
existence of symmetric DVs as well as SVs suggests the
existence of asymmetric DVs that could be generated
from the DVs via a SSB. Nevertheless, we were unable to
find such solutions. A possible explanation for the lack of

Fig. 8. (Color online) Some examples of single vortices and VF
states with different shapes (shown as intensity plots): two types
of STs (F1, F2), single doughnut (G), two types of TF states (H1,
H2), and doughnut-fundamental state (I). Labels correspond to
points in Fig. 2.
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solutions with such a shape is the reduced symmetry of
the dual-core system which makes the four DDs nonde-
generated. Consequently, as commented above, the gen-
eration of a stationary vortex requires a specific power ra-
tio between real and imaginary parts. Additionally, an
asymmetric state also requires a specific ratio between
power carried by each core and both conditions cannot be
fulfilled simultaneously to form an asymmetric DV sta-
tionary solution. It is possible, however, to have a state
with a vortex in one core and a field without phase struc-
ture in the other one.

At low power (see Fig. 2) there is a single curve of AVs
describing the solutions of a vortex with a doughnut
shape [of the form similar to the one shown in Fig. 8 (G)].
This curve bifurcates from one of the asymmetric DDs at
point Oy (see Fig. 4). Close to the bifurcation point, pow-
ers of real and imaginary parts become increasingly dif-
ferent up to the point (bifurcation) where one of them
vanishes and the field takes the shape of an AD.

For higher power the asymmetric tripole solutions are
found. In this case the junction region is much more com-
plicated since several branches corresponding to several
multipolar solutions appear (Fig. 8). On one hand, there
are STs of two different shapes (images F1 and F2) which
are nondegenerated due to the presence of the second
core. On the other hand, there are also nondegenerated
combinations of a tripole and a fundamental field [tripole-
fundamental (TF)] also with two different shapes (images
H1 and H2). These TF solutions, along with the VF with a
doughnut vortex (image I), can also present two possible
phase distributions that we name bounding (b) or anti-
bounding (a) depending, respectively, on whether the fun-
damental field has the same or opposite sign as the clos-
est lobe of the dipole forming the vortex. This means that
the corresponding curves on the power diagram are actu-
ally formed by two close lines. In Fig. 9 we show the re-
gion of the junction point as a zoomed diagram represent-
ing all the lines describing the different family solutions

22 —
L7 e T s
6\9/,:;1/’ b TP
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" )
b(l)
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8_20 all) <
1 b(2)
197 ST
AV
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0.91 0.92 0.93

propagation constant,

Fig. 9. Detail of the power diagram at the junction where dif-
ferent branches of ST and TF solutions originate from the
asymmetric-vortex family. The shape of the different solutions is
indicated with labels: single (doughnut) vortex (SV), ST, TF, and
(doughnut) VF. Additionally, the type of solution according to the
phase structure is also indicated with labels: bounding (b) and
antibounding (a). The numbers in brackets indicate the type of
solution according to symmetry criteria (cases F and H in
Fig. 8).



2306 J. Opt. Soc. Am. B/Vol. 26, No. 12/December 2009

Fig. 10. (Color online) Examples of single vortices and VF states
correspondent to families of the doughnut and quadrupole types.
The two types of single quadrupoles (J1, J2) originate from the
SV branch in Fig. 9 at higher power. The two types of
quadrupole-fundamental states (L1, L2) originate from the VF
branch at higher power. The doughnut-shaped single-vortex (K)
and VF (M) are also examples related to a higher power.

and how they originate in a nontrivial way at the junc-
tion. Again, the breakage of symmetry induced by the
dual-core structure prevents the existence of actual bifur-
cation points.

For higher powers, in a similar fashion as in the case of
the DVs, the upper branches correspondent to the single-
doughnut and doughnut-fundamental solutions go
through new junction zones where single quadrupoles
and combinations of quadrupoles and fundamental fields
arise. Some examples are presented in Fig. 10. Again, the
symmetry of the structure allows only two kinds of single
quadrupoles (images J1 and J2) and two quadrupole-
fundamental states (images L1 and L2). The latter ones
can be of two types, bounding or antibounding.

4. STABILITY

We have checked the stability of the states of the different
families by simulating their propagation using a standard
beam propagation method. The main conclusion is the ex-
istence of two different scenarios. States characterized by
a power over a threshold undergo collapse after a certain
propagation distance. The higher the power the shorter
the distance they evolve before collapsing as is shown in

250
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Fig. 11. Maximum intensity versus propagation distance for dif-

ferent double vortices (continuous curves) and single vortices

(dashed curves). DV curves correspond to P=34.4 (a), P=30.1 (b),

P=279 (c), and P=5.8 (d). Single-vortex simulations are for

P=27.3 (e), P=15.8 (f), P=15.1 (g), and P=2.76 (h).
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Fig. 11 cases (a) and (b) and (e) and (f) for DV and single-
vortex states, respectively. Remarkably, this property is
dependent on power density and not on the family under
consideration. In fact, families with power distribution on
both cores—DV and VF—present a collapse threshold
about P~ 30 while those families with power on a single
core (single vortices) present a threshold around P
~15.75. In both cases the propagation constant at the
threshold point is about B~ 0.88. The power threshold is
approximately at the point where the tripole solutions
originate and consequently they undergo collapse upon
propagation.

On the other hand, below the power threshold, the
modes do not develop collapse and the PCF structure pre-
vents them to spread out as in a bulk Kerr medium. Nev-
ertheless, after a distance they develop the azimuthal in-
stability so that the vortices break into fundamental
solitons that remain spinning inside the PCF core. The
distance for this breakup to occur depends on power, so
that the lower the power the longest distance they survive
as shown in Fig. 11 cases (c¢) and (d) and (g) and (h). For
low powers (close to the linear limit) the distance before
the breakup can be quite long.

Since the stationary states for a reasonable nonlinear
regime are unstable, since they collapse or at least de-
velop the azimuthal instability, an interesting further
step is to seek ways to enhance the stability properties of
the medium, as considering vectorial systems of incoher-
ently coupled components or using media with nonlocal
nonlinearities. Anyway, the study of the present system,
due to the simplicity of the model, constitutes a necessary
previous step for the study of vortices in dual-core PCF's.

5. CONCLUSIONS

In this work we have studied and classified the different
stationary nonlinear vortex-type families of solutions in a
PCF with two consecutive defects constituting a dual-core
nonlinear coupler. We found solutions in the form of DVs
with shapes of double doughnut, double tripole, and
double quadrupole. Additionally, asymmetric solutions in
the form of single vortices (located in one of the cores) and
combination of vortices and fundamental states, also with
doughnut, tripole, and quadrupole shapes, were also cal-
culated. The power diagram with the different bifurca-
tions and junction points was obtained and the different
solution families were classified. Finally, we presented a
stability study determining different instability scenarios.
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